“The biological denitrification technology is based on the conventional theory that carbon is the limiting factor in the efficiency of biological denitrification. Heterotrophs utilize carbon from organic compounds like sugars, organic acids and amino acids as source of electrons rather than from inorganic compounds like carbon dioxide…[1]
Heterotrophic bacteria obtain sugars (food) from their environment. Heterotrophic organisms responsible for denitrification can be further described as anaerobic facultative bacteria; that is, they can thrive in anaerobic or anoxic environments.
The reaction sequence for nitrate removal by heterotrophic bacteria is illustrated in the following equation:
For many municipal wastewater treatment (POTWs) facilities removing inorganic nitrogen to meet permitted discharge levels can be a difficult requirement. Discharging nitrate loads into surface waters can have adverse impacts on aquatic environments, including eutrophication and toxic algal growths. Controlling nutrient discharges is also an issue for industrial wastewater treatment facilities.
POTW’s and industrial treatment facilities strive to keep their biological treatment functioning properlysothesesortsofissuesdon’tarisedownstreamfromtheirdischargepoint. Equipping facilities with biological nutrient removal (BNR) capability will aid utilities in controlling nitrogenous species in wastewater effluent.
Even with BNR, denitrification can be challenging when the plants are underloaded for flow as well as biological or biochemical oxygen demand (BOD) and perhaps chemical oxygen demand (COD). Denitrification is inhibited by a lack of available carbon.
©Article is copyright 2019 protected by Rick Allen, Environmental Concierge and BioLynceus, LLC